Multi-agent Remote Sensing Image Segmentation Algorithm
نویسندگان
چکیده
Due to fractal network evolution algorithm (FNEA) in the treatment of the high spatial resolution remote sensing image (HSRI) using a parallel global control strategies which limited when the objects in each cycle by traversal of and not good use the continuity of homogenous area on the space and lead to problems such as bad image segmentation, therefore puts forward the remote sensing image segmentation algorithm based on multi-agent. The algorithm in the merger guidelines, combining the image spectral and shape information, and by using region merging process of multi-agent parallel control integral, its global merger control strategy can ensure algorithm has the advantages of parallel computing and fully considering the regional homogeneity, and continuity. Finally simulation experiment was performed with FNEA algorithms, experimental results show that the proposed algorithm is better than FNEA algorithm in dividing the overall effect, has a good stability.
منابع مشابه
Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملSegmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملRemote sensing image segmentation based on ant colony optimized fuzzy C-means clustering
Middle spatial resolution multi-spectral remote sensing image is a kind of color image with low contrast, fuzzy boundaries and informative features. In view of these features, the fuzzy C-means clustering algorithm is an ideal choice for image segmentation. However, fuzzy C-means clustering algorithm requires a pre-specified number of clusters and costs large computation time, which is easy to ...
متن کاملMulti-scale and Multi-feature Segmentation of High Resolution Remote Sensing Image
With the development of the remote sensing technology, high resolution remote sensing images widely penetrates into the common people’s life. Traditional medium or low resolution image processing method based on pixel doesn't meet people’s requirement any more. In view of it, this paper puts forward a high resolution remote sensing image segmentation method based on the traditional watershed al...
متن کاملA Region Segmentation Algorithm for Remote Sensing Imaging Combined with Multi-feature and Multi-band
High spatial resolution remote sensing images provide many rich features, such as spectrum, shape, texture, etc. However, only spectral character is adopted in many traditional image segmentation methods, leading to segmentation results unsatisfactory. A multi-feature and multi-band region segmentation algorithm (MM-RSA) is proposed. First, texture image of a band is extracted and is combined i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Multimedia
دوره 9 شماره
صفحات -
تاریخ انتشار 2014